区块链小白入门:7个步骤入门区块链

资讯 2024-06-22 阅读:55 评论:0
美化布局示例

欧易(OKX)最新版本

【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   全球官网 大陆官网

币安(Binance)最新版本

币安交易所app【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

火币HTX最新版本

火币老牌交易所【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

2017 年是比特币大爆发的一年。在潜水这么多年之后,比特币的价格一下子从 1000 美元左右飞涨至将近 20000 美元。多少人摇身一变,成了“密码学货币交易专家”。

2017 was the year of the Big Bitcoin. After so many years of diving, the price of Bitcoin jumped from $1,000 or so to nearly $20,000. How many people turned into &ldquao; & & rdquao, a cryptographic currency trader;

赶上好时候确实可以狠赚一笔,不过醒醒吧,盛宴已散。

We can make a fortune in good time, but wake up and the feast is over.

区块链小白入门:7个步骤入门区块链

-2013 年 10 月至 2018 年 10 月的比特币价格走势图(来源:Coinmarketcap.com)-
尽管让人们肾上腺素爆棚的主要还是飞速攀升的市值,但这波热潮最初还是由技术掀起的。区块链技术依然有巨大潜力。现在正是业务开发人员、企业家和个人爱好者怀着一腔热血上车的时候。不过热血翻涌之余,首先还是应该增进一下对区块链技术的了解。

- October 2013-October 2018 Bitcoin price trends (source: Coinmarketcap.com) -
, although the main market value for the adrenaline boom was the rapid rise, the tide started with technology. Block chain technology still has great potential. It is now time for business developers, entrepreneurs and personal fans to get in the car with a bloodbath.

只可惜,目前讲解区块链技术的文章不是涉及太多复杂的技术术语,就是太过肤浅,缺乏深度。这两种类型的文章都不便于读者清楚地理解文章内容。怎么办呢?我建议你不妨就从这篇文章开始。只要 10 分钟,就能了解区块链技术为什么这么具有颠覆性了。花这点时间还是物超所值的。祝阅读愉快。

Unfortunately, the current article on block chain technology involves either too many complex technical terms or too superficial and lacking in depth. Neither type of article makes it easier for readers to understand the content of the article clearly. What do you say? I suggest you start with this article. With 10 minutes, you can see why block chain technology is so disruptive. This time is worth more. Read well.

首先,区块链是一种电子化数据的存储方法。数据是以区块的形式出现的,想象一下有很多存储着数字化数据的区块。

First, the block chain is a way of storing electronic data. The data is in the form of blocks, and imagine there are lots of blocks where digital data are stored.

这些区块都链接在了一起,为其内部数据赋予了不可变性。当一个数据块被链接到了这条链上,其内部数据就再也无法更改了。

These blocks are linked together, giving their internal data non-variability. When a data block is linked to this chain, its internal data can no longer be changed.

一旦某个区块被添加到了链上,里面的数据对任何人都是公开可见的。这项技术具有非凡的革新意义,可以用来记录我们能想到的几乎所有数据(例如,产权、身份、余额、病历等等),同时不存在被篡改记录的风险。假设我买了一套房子,把产权证拍照上传到了区块链上,我就可以证明我在那个时刻享有这套房产的所有权。

Once a block is added to the chain, the data in it is publicly available to anyone. This technology is an extraordinary innovation that can be used to record almost all the data we can think of (e.g. property rights, identities, balances, medical records, etc.) without the risk of tampering with records. Assuming that I bought a house and took a photo of the title card onto the block chain, I could prove that I had ownership of the property at that time.

一旦这个信息上链,就没人能够更改它(好吧,还是有办法更改的,这里有一篇进阶阅读材料,我建议你稍后阅读)。

Once this information is chained, no one can change it. (Well, there's a step-by-step reading here, and I suggest you read it later.)

因此,区块链是一种存储数据且保证数据不被篡改的方法。

The block chain is therefore a method of storing data and ensuring that they are not tampered with.

这听上去不错,不过随之而来的问题是:我们是怎么实现这样的技术的?

That sounds good, but the question that follows is: how do we achieve this technology?

好吧,我们先拿比特币区块链做个例子。比特币区块链是现存历史最悠久的区块链。在比特币区块链上,每个区块的大小在 1 MB 左右。至截稿日,这条链上已经累积了 52.5 万个区块,链上存储的数据总量约为 52.5 万 MB 。(校对注:其实远远没有 52.5 万 MB,因为在早期,很多区块都没有打满 1MB。另,截至今日(2019 年 4 月

All right, let's start with the bitcoin block chain. The bitcoin block chain is the oldest existing block chain. On the bitcoin block chain, each block is about 1 MB-sized. By the deadline, the chain has accumulated 52.50 million blocks, with a total of 52.50 million MB in the chain.

24 日,已经积累了 57.3 万个区块,总数据量约 250 GB。)

On 24 September, there were 57.3 million blocks accumulated, with a total data of approximately 250 GB.

比特币区块链上仅存储 比特币的交易数据 。它就像是一个庞大的交易记录库,可追溯至第一笔比特币交易。在本文中,我们假设有一条存储交易数据的区块链,就像比特币区块链那样。

Only bitcoin transactions are stored on the bitcoin block chain. It's like a huge transaction log, dating back to a bitcoin transaction. In this paper, we assume that there is a block chain that stores transaction data, like a bitcoin block chain.

想象有三个存储着交易数据的区块(如图一所示)。

Imagine three blocks containing transaction data (as shown in figure I).

区块链小白入门:7个步骤入门区块链

这三个区块内都存有一些交易数据。这没什么特别的。就好比是三个独立的 word 文档,里面描述了交易的内容和余额变化情况。文档 1 会按照时间顺序从第一笔交易开始记录,直到数据量达到 1 MB 为止,之后的交易会记录在文档 2 中,直到数据量达到 1 MB 为止,以此类推。这些文档就是数据块。它们一个接着一个联系(链接)在一起。为此,每个区块会根据其内部数据串生成一个特殊的(数字)签名。如果这个区块中的数据发生任何变动,即使只改变了一个数字,这个区块的签名也会发生改变。这是如何实现的?欲知详情,请阅读步骤三中的 哈希运算 部分。

All three blocks contain a number of transaction data. This is nothing special. It is like three separate word documents, which describe the changes in the content and balance of the transaction. The document 1 will start recording from the first transaction in chronological order until the amount of data reaches 1 MB, and the subsequent transaction will be recorded in document 2 until the amount of data reaches 1 MB, and so on. These documents are data blocks. They are then linked together. To this end, each block will generate a special (digit) signature based on its internal data string. If there is any change in the data in this block, even if there is only one number, the signature of the block will change. How does this happen? For details, please read the Hashi calculation part of step 3.

(校对注:如上文所述,实际情形中的区块并不是个个都接近区块大小的上限,实际数据大小要看把区块打包上链的矿工在区块中记录了多少交易,而他们并不会等到有了 1MB 交易数据才开始动手。实际情形见下文)

(record note: As noted above, blocks in the actual situation are not all close to the upper limit of block size, and the actual size of data depends on how many transactions the miners have recorded in the blocks that have packed the blocks up the chain, and they do not wait until they have 1MB transaction data. See below for the actual situation)

假设区块 1 中记录了两笔交易,分别是交易 1 和交易 2 。这两笔交易的总数据量达到了 1 MB (实际上一个区块中包含的交易笔数远不止这点)。根据这个区块内的数据串会生成一个签名。假设这个签名是 “X32” 。如下图所示:

Assuming that block 1 records two transactions, transaction 1 and transaction 2. The total amount of data for these two transactions amounts to 1 MB (in fact, a block contains far more than that). A signature is generated from the data string in this block. Assuming that the signature is & ldquo; X32”.

区块链小白入门:7个步骤入门区块链

请记住,即使区块 1 中存储的数据改动了一个数字,也会得到一个完全 不同的签名 !只要将区块 1 的签名添加到区块 2 中,就可以将区块 1 的数据与区块 2 关联起来。区块 1 的签名也包含在区块 2 的数据串内,因此这个签名与区块 2 中的其它数据一样,成了区块 2 签名的数据基础。如下图所示:

Remember that even if the data stored in block 1 changes a number, a completely different signature will be obtained. As long as the signature of block 1 is added to block 2, the data of block 1 can be associated with the data of block 2. The signature of block 1 is also included in the data string of block 2, so that this signature, like the other data in block 2, becomes the data base for block 2 signatures. As shown in the figure below:

区块链小白入门:7个步骤入门区块链

正是这些签名将区块链接在了一起,形成了一条区块链。现在加上区块 3 ,整条链的情况如下图所示:

It is these signatures that link blocks together and form a chain of blocks. With blocks 3, the whole chain is shown below:

区块链小白入门:7个步骤入门区块链

现在,假设区块 1 中的数据被 更改 了。比方说 Damian 和 George 之间的交易被更改了。Damian 向 George 发送了 500 个而非 100 个比特币。由于区块 1 中的数据串改变了,其签名也相应改变了。更改过数据之后,区块 1 的签名不再是 “X32” ,而是变成了 “W10” ,如下图所示:

Now, assuming that the data in block 1 have been changed. For example, the transaction between Damian and George has been changed. Damian sent 500 instead of 100 bitcoins to George. The signature of block 1 changed as the data string changed in block 1. After changing the data, the signature of block 1 was no longer & ldquo; X32” & & & & ; W10& rdquao; as shown in the figure below:

区块链小白入门:7个步骤入门区块链

-请访问 r/BlockchainSchool 查看更多关于区块链的科普知识-

- Please visit r/ BlockchainSchool for more knowledge about block chains -

这样一来,区块 1 的新签名 “W10” 跟之前添加进区块 2 数据串的旧签名 “X32” 产生了冲突。区块 1 和区块 2 之间的链接就断了。这条链上的其他用户就会知道区块 1 中的数据被更改了。为了维护区块链的不可变性,其他用户会拒绝同步更改后的交易信息,依旧维持原有的交易记录(即 Damian 向 George 发送 100 BTC )不变,整条链依旧保持完整。这就意味着,要想不露痕迹地篡改交易,必须将区块 2 数据串中区块 1 的旧签名替换成新签名。然而,一旦区块 2 中的数据串发生变化,区块 2 的签名也会随之发生变化。假设区块 2 的签名从 “9BZ” 变成了“PP4” 。那么区块 2 和区块 3 之间的链接就断了!

As a result, the link between block 1 and block 2 is broken. Other users in this chain will know that the data in block 1 has been altered. In order to maintain the non-variability of the block chain, other users will refuse to synchronize the changed transaction information and maintain the original transaction record (i.e. Damian sends 100 BTC to George), the entire chain remains intact. This means that the old signature in block 2 data series 1 must be replaced with a new signature. However, once the data chain in block 2 changes, the signature of block 2 will change. The signature of block 2 remains unchanged from & ldquo; 9BZ” becomes & & ldquo; P4&r & quo; then the link of block 3!

区块链小白入门:7个步骤入门区块链

区块链上的区块对所有人都是可见的。因此,如果篡改者真想要不露痕迹地篡改交易,就必须保证篡改之后的区块仍然都联系在一起(否则人们就很容易发现哪个区块跟其他区块并不相连,进而判断出该区块已经被改过了)。也就是说,改掉一个区块必须为后续的所有区块计算新的签名。可以认为这几乎是不可能的,但要理解这是为什么,请看下文。

Blocks on the block chain are visible to all. So, if the tamperer really wants to tamper with the deal undisguisedly, it is important to ensure that all the blocks that have been altered remain connected (otherwise, it is easy to find which blocks are not connected to the other blocks and then to judge that the blocks have been changed). That is to say, changing one block requires new signatures for all subsequent blocks. This is almost impossible, but understand why.

那么,我们以区块 1 为例再画一个示意图。假设区块 1 只记录一笔交易,即 Thomas 向 David 发送 100 BTC 。需要根据这个数据串生成一个签名。在区块链上,这个签名是通过密码学哈希函数生成的。密码学哈希函数是一个极其复杂的数学公式:将任意数据串作为输入值代入公式,可以得到一个独一无二的 64 位输出值。例如,你可以将 “Jinglebells” 一词代入这个哈希函数(哈希函数的种类有很多,这只是其中一例),得到的输出为:

So, let's make one more example of block 1. Assuming that block 1 records only one transaction, that is, Thomas sends 100 BTC to David. A signature needs to be generated from this data string. On the block chain, this signature is generated by the Hashi function by cryptography. The Hashi function is an extremely complex mathematical formula: any data string can be replaced as an input value with a unique 64-bit output value. For example, you can insert & ldquo; Jinglebells” the word into this Hashi function (the Hashi function has many types, and this is just one example), and the output is:

761A7DD9CAFE34C7CDE6C1270E17F773025A61E511A56F700D415F0D3E199868

只要这个输入中有一个字符发生变化,包括改变大小写或是增加空格和标点,就会得到截然不同的输出。如果你在这个输入后面加上一个句号变成了“Jinglebells.”,得到的输出就变成了:

As long as a character changes in this input, including changing case or adding spaces and markers, you get a very different output. If you add a stop after this input to &ldquao; Jinglebells.&rdquao; the output becomes:

B9B324E2F987CDE8819C051327966DD4071ED72D998E0019981040958FEC291B

如果我们把句号去掉,还是能得到跟之前一样的输入:

If we get rid of the stop, we can still get the same input as before:

761A7DD9CAFE34C7CDE6C1270E17F773025A61E511A56F700D415F0D3E199868

对于同一个密码学哈希函数来说,相同的输入必定会得到相同的输出,不同的输入必定会得到不同的输出。比特币区块链就是利用哈希函数为区块生成签名的,将区块中的数据作为输入,得到的输出就是区块的签名。我们再来看看只含有一笔交易( Thomas 向 David 发送 100 BTC )的区块 1 示意图。

For the same cipher Hashi function, the same input is bound to get the same output, and the different input is bound to get a different output. The Bitcoin block chain is used to generate a signature for a block by using the Hashi function. The output is the signature of a block by using the data in the block as input. Let's look at the block containing only one transaction (Thomas sent 100 BTC to David).

区块链小白入门:7个步骤入门区块链

假设区块 1 中的 数据串 如下所示:

Assuming that the data string in block 1 is as follows:

Block 1 Thomas -100 David +100

将这个数据串输入哈希函数,得到的输出(签名)如下所示:

Enter this data string into the Hashi function. The output (signature) obtained is as follows:

BAB5924FC47BBA57F4615230DDBC5675A81AB29E2E0FF85D0C0AD1C1ACA05BFF

这个签名会被添加进区块 2 的中。再假设现在 David 向 Jimi 转了 100 BTC ,这笔交易被打包进了区块 2 。那么如下图所示:

This signature will be added to block 2. Assuming that now David turns to Jimi, 100 BTC, the transaction is packaged into block 2. The following graph then shows:

区块链小白入门:7个步骤入门区块链

区块 2 的数据串如下所示:

The data string for block 2 is as follows:

Block 2 David -100 Jimi +100 BAB5924FC47BBA57F4615230DDBC5675A81AB29E2E0FF85D0C0AD1C1ACA05BFF

将这个数据串输入哈希函数,得到的输出(签名)如下所示:

Enter this data string into the Hashi function. The output (signature) obtained is as follows:

25D8BE2650D7BC095D3712B14136608E096F060E32CEC7322D22E82EA526A3E5

这就是区块 2 的签名。每一个区块都会通过这个密码学哈希函数生成一个数字签名。哈希函数种类繁多,比特币区块链用的是 SHA-256 哈希算法。

This is the signature of block 2. Each block generates a digital signature through this cryptographic Hash function. The Hashi function is diverse and the Bitcoin block chain uses the SHA-256 Hashi algorithm.

但是,(仅有上述措施显然还不够)如果有人想篡改区块中的数据,TA 可以在篡改之后生成新的签名,塞下一个区块中,然后逐个逐个区块生成新的签名,这些改动后的区块还是形成了一条链,他人就没法分辨出数据已经被更改过了。如何防止这种情形呢?

But (it is clear that the above measures alone are not enough) if someone tries to tamper with data in blocks, TA can create new signatures after tampering, insert new signatures in the next block, and then create new signatures on a block-by-block basis, these altered blocks are still a chain, and others cannot distinguish that data has been altered. How can this be prevented?

答案是只有符合特定要求的哈希值(签名)才会被区块链接受。这就是第四阶中介绍的挖矿。

The answer is that only Hashi (signature) that meets certain requirements will be accepted by the block chain. This is the mining described in the fourth step.

并非所有的签名都符合要求。区块链协议会预先确定一些要求,比如,在比特币区块链上,只有以连续的零开头的数字签名相对应的区块才能上链。例如,只有在数字签名以不少于 连续 10 个零 开头的情况下,对应的区块才能上链。

Not all signatures meet the requirements. Block chain agreements predetermine certain requirements, such as, for example, that on a bitcoin block chain, only blocks corresponding to a continuous zero-point digital signature can be chained. For example, the corresponding blocks can be chained only if the digital signature starts with not less than 10 consecutive zeros.

然而,由第三小节可知,每个数据串对应的哈希值都是 唯一 的。如果一个区块的签名(哈希值)开头少于 10 个零呢?为了获得符合条件的区块签名,需要反复改变输入的数据串,直到能生成以连续 10 个零开头的签名为止。但由于交易数据和元数据(区块编号、时间戳等等)需要保持原样(否则意义就改变了),每个区块里面还另外添加了一段特定长度的、可以改动的数据。想把区块添加到链上时,人们可以不断改变这段数据,直到找到一个合格的签名,然后确定下这段数据的具体值。这段数据就是区块的 nonce 。nonce 不是预先确定的数据,而是应实际需要而找出的一串完全随机的数字(注:图中所示的其他数据可以由任意字符组成,nonce 只能由数字组成)。

However, it is clear from the third subsection that the Hashi value corresponding to each data string is the only one. What if the signature of a block (Hashi value) starts at less than 10 zero? In order to obtain an eligible block signature, the input data string needs to be changed repeatedly until 10 consecutive zero signatures can be generated. As transactional data and metadata (block numbers, time stampes, etc.) need to remain the same (otherwise, the meaning changes), each block adds a specific length of variable data. To add a block to the chain, one can constantly change the data until a qualified signature is found, and then determine the exact value of the next segment.

综上所述,区块包含:1)交易数据;2)上一个区块的签名;3)nonce 。这种通过反复更改 nonce、对区块数据进行哈希运算、寻找合格签名的过程就叫做 挖矿 ,也就是 矿工 所做的事。矿工投入大量电力,转化成算力,不断代入 nonce 进行哈希运算,直到找到合格的签名(输出)为止。矿工手中掌握的算力越多,哈希运算的速度就越快,抢先找到合格签名的可能性就越高。这是一种 反复试错 的过程,如下图所示:

As noted above, blocks contain: 1) transaction data; 2) signature of the previous block; 3) nonce. This process is called mining, that is, what miners do by repeatedly changing nonce data, making Hashi calculations of block data, and searching for qualified signatures. Miners invest large amounts of electricity, convert to arithmetic, and replace them with nonce until the proper signature (output) is found. The faster the miner gets the calculation, the higher the likelihood that the first qualified signature will be found. This is a process of repeated error, as shown in the following graph:

区块链小白入门:7个步骤入门区块链

-注:nonce 必须是数字(详情请阅读 r/BlockchainSchool 上的讲解)-
区块链网络上的任何用户都可以通过下载并启动 挖矿软件 来参与挖矿,实际上,这就是用他们的硬件计算能力来计算区块的 nonce 。以比特币区块链上的 Block #521,477 为例:

-Note: Nonce must be a number (for details read on r/ BlockchainSchool) -
any user on the block chain network can participate in mining by downloading and starting mining software, which is actually noce using their hardware to calculate blocks. For example, Block #521,477 on the bitcoin block chain:

区块链小白入门:7个步骤入门区块链

-源自区块链浏览器 blockchain.com -

- It's from a block-chain browser.

可以看出,这个区块的哈希值(签名)和上一个区块的哈希值都是以相同数量的零开头的。找到这样一个哈希值并非易事,需要付出大量算力和时间,或者 运气爆棚。

As can be seen, both the Hashi value of this block and the Hashi value of the previous block begin with the same number of zeros. Finding such a Hashi value is not easy, it takes a lot of money and time, or it's bad luck.

没错,有时候运气爆棚的矿工在几分钟之内就能算出合格的签名,花的算力也很少。Block #523034 就是一个极其罕见的例子。

That's right, sometimes the lucky miners will be able to calculate a proper signature in a few minutes, and they'll spend little money. Block #523034 is an extremely rare example.

一个算力很少的小矿工很快就找到了合格的签名,而其他矿工的算力加起来是他的 7 万亿倍。相比之下,赢得 Powerball 彩票头奖的概率是 2.92 亿分之一,而这位幸运儿挖到矿的概率是中头奖的 1/24000 。

A small miner with little numeracy soon found a qualified signature, and the other miners added up seven trillion times his. By contrast, the probability of winning the Powerball lottery is one-ninth million, and the probability of the lucky mine being mined is one-two-four thousand in the middle.

不要小看这些零。这一小节的重点是,找到一个合格的签名很 难。

Don't underestimate the zeros. The point of this subsection is that finding a qualified signature is very difficult.

正如第三阶中所述,更改某个区块会导致它的签名改变,与后续区块记录的对不上,从而与后面的区块断开链接。要想让网络中的其他参与者接受这个被更改过的区块,就要把它跟后面的区块重新链接起来。也就是说,一个区块的签名变了,跟在它后面的所有区块的签名都要改变,才能让别人觉得这是一条前后一致的链。

As stated in the third step, changing a block will result in a change in its signature, which is not matched to the subsequent block records, thus breaking the link to the following block. To allow other participants in the network to accept the altered block, it will have to be reconnected to the back block. That is, the signature of a block has changed, and the signature of all blocks behind it has to be changed in order for others to feel that it is a coherent chain.

你想起什么事没有?

Do you remember anything?

如第四节所述,签名必须符合要求!虽然更改所有区块的签名看似可行,但是要花费很多成本和时间,因此被认为是不可能的,原因如下:

As described in section IV, the signature must comply with the requirement! While changing the signature of all blocks seems feasible, it takes a lot of costs and time and is therefore considered impossible, for the following reasons:

假设有一个矿工 恶意 篡改了某个区块内的交易,然后根据哈希运算为这个区块连同跟在它后面的所有区块生成了新的签名,以此让网络中的其他参与者都接受被篡改过的交易。问题在于,网络中的其他矿工也在原来的链上不断为新的区块计算签名。随着新的区块不断上链,作恶的矿工也要重新计算这些区块的签名。他必须保证所有区块都链接在一起,包括不断被添加到链上的新区块。除非这个矿工拥有的算力超过全网其他人的总算力,否则他永远赶超不了其他矿工。

The problem is that other miners in the network are also counting signatures for new blocks. As new blocks are chained up, the vicious miners recalculate their signatures. He must ensure that all blocks are connected, including new blocks added to the chain. He will never catch up with other miners unless the miner has more than the total power of the rest of the network.

(校对注:这一段的实际意思是,只要矿工都在自己看到的最长区块链上挖矿,所有算力就会随时间自然汇聚到一条主链上,而攻击者只有制造出一条比当前主链更长的链,才能成功改变大家共同认可的交易记录。这种始终以最长链为主链(有效链)的原则,就是所谓的 “最长链规则”,是 Nakamoto Concensus(中本聪共识机制)的一部分。另,并不是所有区块链都采用了中本聪共识。)

The actual meaning of this paragraph is that, as long as the miners are digging on the longest chain of blocks they see, all the calculus will naturally converge on a main chain over time, and the attackers will only succeed in changing the commonly accepted transaction record by creating a longer chain than the current one. This principle, always based on the longest chain (effective chain), is known as & ldquo; the longest chain rule & & rdquao; it is part of the Nakamoto Concensus (medium-bresent consensus mechanism).

区块链小白入门:7个步骤入门区块链

如今有数百万用户在比特币区块链上挖矿,由此可以推定某个恶意参与者或实体的算力是不可能超过全网剩余算力的。这就意味着网络中的其他参与者不可能接受任何对区块链的修改,从而实现了区块链的不可变性。一旦数据被添加到区块链上,就无法再修改了。

Millions of users are now digging on the Bitcoin block chain, so it can be assumed that a malicious participant or entity cannot be counted beyond the full network. This means that other participants in the network cannot accept any modification of the block chain, thereby making the block chain non-variable.

只有一种例外,就是恶意参与者的算力真的超过全网其他人的算力总和。从理论上来说,这种情况下是有可能篡改区块链的(即改变大家共同认可的历史记录)。这就叫做 51% 攻击(我写了另一篇文章来解释这种情形),过去也有很多区块链遭受过这种攻击。

The only exception is that malicious participants really outpace the sum of others on the Internet. In theory, this is a situation in which it is possible to tamper with the chain of blocks (i.e. to change the history of commonly accepted history). This is called an attack of 51% (and I wrote another article explaining the situation), and in the past there have been many such attacks on the chain.

(校对注:目前为止,遭受过 51% 攻击的著名区块链有 bitGold、Verge、Ethereum Classic。)

(record note: So far, 51% of the well-known blocks that have been attacked have been bitGold, Verge, Etheeum Classic.

实际上,对比特币区块链发动 51% 攻击所能获得的收益远抵不上高昂的攻击成本。要想获得足够多的算力,除了要负担硬件、冷却设备和存储空间方面的成本,还要承担被千夫所指的风险,更重要的是,会对被攻击区块链的生态系统造成极大的损害,攻击所得的收益也会大幅贬值。51% 攻击实际上就是以一己之力对抗区块链上的其他用户。这也就是为何参与挖矿的用户人数越多,整条链的安全性就越高。

Indeed, 51% of the profits from the attack on the Bitcoin block chain are far less than the high cost of the attack. To be able to do enough, in addition to the costs of hardware, cooling equipment, and storage space, it is also necessary to assume the risks involved, and, more importantly, to cause significant damage to the ecosystem of the targeted block chain, the gains from the attack will be significantly reduced.

恭喜你已经又进了一阶!现在,你应该已经理解(大型)区块链被认为具有不可更改性的原因了吧。不过现在又出现一个很重要的问题:如何防止矿工将伪造的交易数据添加到区块链上?从技术上来说是做不到的。关于区块链交易的详细解释可参见这篇文章。

Congratulations! Now you understand why the (large) block chain is considered to be immutable. But now there is another important question: how to prevent miners from adding forged transaction data to the block chain? Technically impossible.

(校对注:只有私钥掌控者才能花费相应地址中的资金,而矿工并不知道你的私钥,他人只能通过你公开的公钥来验证某笔交易是不是你发起的。所以伪造交易并不可行)

(record: Only private key controllers can spend the money in the corresponding address, and miners don't know your private key, and others can only verify through your public key that a transaction has been initiated by you. Counterfeiting a transaction is not possible.)

……区块链协议自动以最长链上的交易记录为准,将这条链视为代表绝大多数参与者的链。打造最长链需要消耗全网绝大部分算力。被篡改过的区块就与最长链断开了链接,因此会被全网绝大多数节点自动拒绝。

& Hellip; & Hellip; block chain agreements automatically rely on the record of transactions on the longest chain and view this chain as representing the vast majority of participants. Building the longest chain requires the majority of the net's arithmetic. The altered blocks are disconnected from the longest chain and are automatically rejected by most nodes of the network.

在比特币区块链上, 所有交易历史和钱包余额都是公开可见的(blockchain.info)。任何人都可以查看任一钱包的余额情况,或是始自(2009 年 1 月 3 日的)第一笔交易的所有交易记录。虽然任何人都能查看钱包余额,但是这些钱包的所有者大多都是不为人知的。例如,一个钱包里存有 6.9 万个比特币,至本文截稿之时价值约 5 亿美元。这个钱包在 2015 年 4 月使用过一次,之后就再也没有过交易。

On the Bitcoin block chain, all transactions history and wallet balances are publicly visible (blockchain.info). Anyone can check the balance of any wallet, or all transactions from the first transaction (3 January 2009).

(校对注:这一部分其实并没有回答 “由谁决定规则” 的问题,只大概说明了 “根据现有规则,这种技术是可以实现的”。公链治理是一个复杂的问题,也超出了这篇文章需要说明的范围了。)

(Reference: This part does not actually answer & & ldquo; who decides the rules & & rdquao; the question is only about & & & ldquao; the technology is achievable & & rdquao; according to existing rules. Public chain governance is a complex issue that goes beyond what this article needs to say.)

密码学货币从本质上来说都是比特币的变体。绝大多数加密货币都是按照自己的区块链协议搭建的,遵循不同于比特币的规则。比特币应当被归类为一种货币,也就是说它明确具备货币功能。门罗币也是一种具有相同功能的加密货币,不过它的区块链协议还增加了一些规则来增强隐私性(提高交易溯源的难度)。

The cryptographic currency is essentially a bitcoin variant. The vast majority of encrypted currency is built in accordance with its block chain agreement, which follows a different rule from that of bitcoin. Bitcoin should be classified as a currency, that is, it clearly has a monetary function.

不过,用区块链发行的资产可以被赋予很多种不同的用途,这点由发行方决定,如此发行的资产一般被称为“代币”。这些代币可以赋予其所有人某种权利,例如博彩执照、社交媒体渠道、 水电等等。所有这些资产交易都记录在不同的区块链上,并且可以通过币安之类的交易所进行线上交易。

However, assets issued in block chains can be assigned a wide range of different uses, as determined by the issuer, and the assets so issued are generally referred to as &ldquao; tokens & rdquao; and these tokens can give some rights to their owners, such as gambling licences, social media channels, utilities, and so on. All these asset transactions are recorded in different block chains and can be traded online through exchanges such as currency security.

代币其实是一种新型互联网货币,可能会影响到一部分行业,其中一个典型的例子就是股票市场。在未来,公司股份之类的产权很有可能会以代币的形式存储到区块链上。区块链不仅限于以代币的形式代表实物价值,也可以安全地记录病历、身份、历史记录、纳税记录等数据。这就是区块链技术的伟大之处,还不提区块链的另一个重要特性:去中心化。

In the future, equity rights, such as corporate shares, are likely to be stored on the block chain in the form of tokens. The block chain is not limited to representing physical value in the form of tokens, but can also safely record data such as medical records, identities, historical records, tax records, etc. This is the greatness of block chain technology, not to mention another important feature of the block chain: decentralization.

以上就是区块链小白入门:7个步骤入门区块链的详细内容,更多关于7个步骤入门区块链的资料请关注脚本之家其它相关文章!

This is the small white entry to the block chain: details of the seven-step entry block chain and more information on the seven-step entry block chain.

本站提醒:投资有风险,入市须谨慎,本内容不作为投资理财建议。
Tag:区块链  
美化布局示例

欧易(OKX)最新版本

【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   全球官网 大陆官网

币安(Binance)最新版本

币安交易所app【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

火币HTX最新版本

火币老牌交易所【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址
文字格式和图片示例

注册有任何问题请添加 微信:MVIP619 拉你进入群

弹窗与图片大小一致 文章转载注明

分享:

扫一扫在手机阅读、分享本文

发表评论
平台列表
美化布局示例

欧易(OKX)

  全球官网 大陆官网

币安(Binance)

  官网

火币(HTX)

  官网

Gate.io

  官网

Bitget

  官网

deepcoin

  官网
热门文章
  • 0.00003374个比特币等于多少人民币/美金

    0.00003374个比特币等于多少人民币/美金
    0.00003374比特币等于多少人民币?根据比特币对人民币的最新汇率,0.00003374比特币等于2.2826 1222美元/16.5261124728人民币。比特币(BTC)美元(USDT)人民币(CNY)0.00003374克洛克-0/22216.5261124728比特币对人民币的最新汇率为:489807.72 CNY(1比特币=489807.72人民币)(1美元=7.24人民币)(0.00003374USDT=0.0002442776 CNY)。汇率更新于2024...
  • 0.00006694个比特币等于多少人民币/美金

    0.00006694个比特币等于多少人民币/美金
    0.00006694比特币等于多少人民币?根据比特币对人民币的最新汇率,0.00006694比特币等于4.53424784美元/32.5436 16人民币。比特币(BTC)美元(USDT)人民币(CNY)0.000066944.53424784【比特币密码】32.82795436 16比特币对人民币的最新汇率为:490408.64 CNY(1比特币=490408.64人民币)(1美元=7.24人民币)(0.00006694USDT=0.0004846456 CNY)汇率更新时...
  • 0.00015693个比特币等于多少人民币/美金

    0.00015693个比特币等于多少人民币/美金
    0.000 15693比特币等于多少人民币?根据比特币对人民币的最新汇率,0.000 15693比特币等于10.6 1678529美元/76.86554996人民币。比特币(BTC)【比特币价格翻倍】美元(USDT)人民币(CNY)0.000/克洛克-0/5693【数字货币矿机】10.6 167852976.8655254996比特币对人民币的最新汇率为:489,807.72 CNY(1比特币= 489,807.72人民币)(1美元=7.24人民币)(0.00015693 U...
  • ??今日BTC和ETH行情分析以及对BICO的看法

    ??今日BTC和ETH行情分析以及对BICO的看法
    ? 如果你刚认识我那么此刻开始你的幸福? 幸运之路正式开启!? ? 历史记录皆可追溯,往期的记录依然可查,山水相逢,皆是缘!?以后也会经常分享一些看好现货给大家! ? 本周热点 ? ? ? ? ? TON 启动公...
  • 孟洪涛谈威科夫交易法

    孟洪涛谈威科夫交易法
     大咖看市 | 判断趋势的工具(一)  原创2016-04-30孟洪涛期货日报 在讨论判断工具之前,我们先说下判断趋势。趋势包括以下几个阶段:趋势的开始,趋势在运行中,以及趋势的结束。我们判断趋势就是能够找出当前市场处于趋势的哪个阶段,以便调整交易。趋势的不同阶段伴随着交易者不同的行为,起始阶段是进场时机,结束阶段是出场时机,同时也是准备反转的进场时机。但是在交易中遇到的最头疼的问题是以上几个趋势阶段并不会白纸黑字表现出来。 ...
标签列表